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NOTES PART VII&VIII: ALGEBRAIC SERIES

We will show in this double section that any algebraic power series is D-finite, i.e., satisfies a linear

differential equation with polynomial coefficients. Further, that any algebraic power series with rational

coefficients is almost integral (or: globally bounded), i.e., has integer coefficients if one multiplies the

variable x with a suitable positive integer.

Proposition DIFF. (Abel 1827, Cockle 1860, Harley 1862) Let y(x) ∈ C[[x]] be an algebraic power

series. There exists a differential equation Ly = 0 with polynomial coeffficients which annihilates

y(x) and all its conjugates, that is, y(x) is differentially finite. An equation of minimal order can

be constructed from the minimal polynomial P of y(x) or, alternatively, from the set of conjugates

of y(x). Its order is the dimension of the C-vectorspace spanned by the conjugates of y(x). [Stan1,

Thm. 2.1, p. 178, Stan3, vol II, Thm. 6.4.6, p. 190, Comt, p. 267, CSTU]

Remarks. (a) The statement holds more generally for algebraic Puiseux series y(x) =
∑∞

k=0 akx
k/e,

e ≥ 1, with the same proof, and also over arbitrary fields of characteristic 0. Matzat claims that the minimal

differential equation of an algebraic power series in Q[[x]] has 0 as a non-singular point [Matz, p. 684-685].

Note here that this is not the case for algebraic Puiseux series, as y(x) =
√
x has differential equation

xy′ − 1
2y = 0 with regular singularity at 0.

(b) Already Frobenius shows that if the conjugates of an algebraic series span a C-vectorspace of dimension

m then they satisfy a differential equation of order m [Frob2, p. 242].

(c) The construction of L given in the two proofs is not as explicit as one would wish. No direct formula for

L in terms of the minimal polynomial P of y(x) seems to be known, not a characterization of the differential

equations which can arise in this way.

First proof. If P (x, y) is the minimal polynomial of y(x), it is irreducible in K(x)[y], hence P and ∂yP

have no common factor in K(x)[y]. Choose A,B ∈ K(x)[y] such that AP + B∂yP = 1. It follows that

B(x, y(x)) · ∂yP (x, y(x)) = 1 and hence 1
∂yP (x,y(x)) ∈ K(x)[y(x)]. Differentiating P (x, y(x)) = 0 with

respect to x yields

y′(x) = −∂xP (x, y(x))
∂yP (x, y(x))

∈ K(x)[y(x)].

By the same argument with y(x) replaced by y′(x) (which is again algebraic over K(x)) we get that

y′′(x) ∈ K(x)[y′(x)] ⊂ K(x)[y(x)]. Iteration yields y(k)(x) ∈ K(x)[y(x)]. But K(x)[y(x)] is generated

over K(x) by 1, y(x), ..., y(x)m with m = degy P − 1, and is hence a K(x)-vectorspace of dimension

less than or equal to the degree of algebraicity of y(x). This implies that y(x) and its the successive
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derivatives y′(x), y′′(x), ..., y(m)(x) are linearly dependent overK(x), so there exists a differential operator

L ∈ K[x][∂] of order ≤ m with Ly(x) = 0. 	

Second proof.* Let SP (x) be a splitting field of P over C(x). We may choose SP (x) inside Puis((x)).

The differentiation in Puis((x)) with respect to x restricts to a derivation ∂̃ on SP (x) since the derivative

y′(x) of a root y(x) of P in SP (x) is a rational function of x and y(x) and thus belongs again to SP (x): to

see this, it suffices to derive P (x, y(x)) = 0 with respect to x, ∂xP (x, y(x)) + ∂yP (x, y(x))y
′(x) and to

express the resulting inner derivative y′(x) in terms of x and y(x).

Alternatively, by the theory of differential fields, one may also use that the derivative on C(x) extends

uniquely to splitting fields of polynomials P in C(x)[y], see [vdPS, ex. 1.5.3(c), p. 5]: We will show this

only for extensions C(x)[y]/〈P (x, y)〉 where P is irreducible. The argument works for any finite extension

of a differential field. As ∂yP is relatively prime to P in C(x)[y], we may choose A,B ∈ C(x)[y] such

that AP + B∂yP = 1. Define via ∂y = −B(x, y)∂xP (x, y) a derivation on C(x)[y] extending ∂x on

C(x). It sends by construction P to the ideal 〈P 〉 and thus induces a derivation on C(x)[y]/〈P (x, y)〉 as

required. This proves the existence. Uniqueness goes as follows: Let y denote the residue class of y in

C(x)[y]/〈P (x, y)〉. It is algebraic over C(x) with minimal polynomial P . Let δ be another derivation on

C(x)[y]/〈P (x, y)〉 fixing C(x). Then ε = ∂ − δ is zero on C(x). Write P =
∑d

i=0 Pi(x)y
i. We get

ε(P ) =
∑d

i=0 ε(Pi(x))y
i +
∑d

i=0 Pi(x)ε(y
i) = ε(y)

∑d
i=0 iPi(x)y

i−1.

From P (x, y) = 0 and the minimality of P with respect to y now follows that ε(y) = 0. This proves

uniqueness. Iterating this process for the successive extensions from C(x) to SP (x), we see that there exists

a unique extension of the derivation ∂x on C(x) to SP (x).

We continue with the construction of the minimal differential operator annihilating an algebraic power

series. Choose a C-basis y1, ..., yn of the vectorspace VP (x) ⊆ SP (x) generated by the roots of P (to

easen the notation, we suppress the dependence of yi on x). We have VP (x) =
⊕n

i=1 Cyi ⊆ SP (x) =

C(x, y1, ..., yn). In general, n will be smaller than the degree degP of P . The Wronskian matrix of n

series y1, ..., yn is

W (y1, ..., yn) =


y1 · · · yn
y′1 · · · y′n
. .
. .
. .

y
(n−1)
1 · · · y

(n−1)
n

.

Denote by w(y1, ..., yn) = det W (y1, ..., yn) its determinant. Let y be a variable, denote by y′, ..., y(n) its

formal derivatives and consider the Wronskian

W (y, y1, ..., yn) =



y y1 · · · yn
y′ y′1 · · · y′n
. . .
. . .
. . .

y(n−1) y
(n−1)
1 · · · y

(n−1)
n

y(n) y
(n)
1 · · · y

(n)
n


with determinant w(y, y1, ..., yn). Now, for y1, ..., yn a basis of VP , define the n-th order differential

operator L ∈ C(x, y1, ..., yn)[∂] = SP (x)[∂] by

* We are indebted to Michael Singer for explaining to us this construction ofL [e-mail October 30, 2020], see also [CSTU, p. 356].

2



HAUSER: FUCHSIAN DIFFERENTIAL EQUATIONS, PART VII & VIII

Ly =
w(y, y1, ..., yn)

w(y1, ..., yn)
.

Clearly, L annihilates y1, ..., yn, by the properties of the Wronskian, and L ∈ C〈x〉[∂]. We will show that

L ∈ C(x)[∂], i.e., that the coefficients of L are rational functions, and then, after multiplication of L with

their common denominator, even polynomials.

The action of the Galois group G of SP (x) over C(x) extends trivially to SP (x)(y, y
′, ..., y(n)), leaving

the variable y and its derivatives y(i) fixed. Note that the action of G commutes with differentiation (with

respect to x) in SP (x),

(σyi)
′ = σy′i.

Indeed, the derivation δ onSP (x) given by z → σ−1(σz)′ equals, when restricted toC(x), the differentiation

∂ of C(x). By the uniqueness of the extension ∂̃ of ∂ to SP (x) we get δ = ∂̃. [ ... one may also extend

the action of G to Puis((x)) and then restrict to SP (x)].

Let σ ∈ G be a group element, and denote by [σ] the matrix of σ ∈ GLn(C(x)) with respect to the basis

y1, ..., yn of VP (x). We claim that σL = L. We have

σw(y, y1, ..., yn) = w(σy, σy1, ..., σyn) = w(y, σy1, ..., σyn) = det[σ]w(y, y1, ..., yn)

and

σw(y1, ..., yn) = w(σy1, ..., σyn) = det[σ]w(y1, ..., yn),

which gives the claim. As this holds for all σ ∈ G, it follows that L ∈ C(x)[∂]. So we have found a

differential equation Ly = 0 which is satisfied by all roots of P .

Let us show that it is minimal. Let L′ be any other linear differential operator annihilating one of the roots

of P . The elements of G act transitively on the roots of P . As they commute with the derivation on SP (x)

we get that L′ annihilates all roots of P , hence VP (x). We divide L′ by L inside C(x)[∂], L′ = ML+N

with N an operator of order < n, the order of L. But also N annihilates VP (x), which has C-dimension n.

Hence N = 0 and L′ is a (left)-multiple of L. This concludes the second proof. 	

Remark. The first proof does not give an explicit formula for the differential equation satisfied by y(x). It

shows, however, that the order of L is less than or equal to the degree of algebraicity of y(x). The order

of L may be much smaller, as show the examples where the dimension of the vectorspace generated by the

conjugates of y(x) is smaller that the degree of algebraicity. In [CSTU], various algorithms are discussed of

how to determine the minimal differential operator L annihilating all roots of a polynomial P ∈ K(x)[y].

Note thatL need not be irreducible, see [CSTU, Thm. 5.1, p. 376, Prop. 5.4, p. 378, Ex. 5.6, p. 385, Ex. 5.15,

p. 391].

Examples. (R5) First order equations y′ − ry = 0 can be rewritten log(y)′ = r with solution y(x) =

exp(R(x)), where R is a primitive of r. If y(x) is a rational function, r(x) = y′(x)
y(x) will be rational as well,

with only simple poles. We will investigate later on for which r the solution y(x) is a rational function or an

algebraic series. S. Yurkevich showed recently that if r ∈ Q(x) and y′− ry = 0 has a power series solution

y(x) ∈ Z[[x]] with integer coefficients, then y(x) is already algebraic. In fact, y(x) will then be the m-th

root of a rational function, for some m ≥ 1.

(R6) Let P ∈ C(x)[y] be an irreducible polynomial of degree d ≥ 2. Assume that the coefficient

a := ad−1(x) of yd−1 in the expansion of P is non-zero. Set L = ∂ − a′

a . This is a first order operator
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with rational coefficients. Let L′ be any operator annihilating the roots y1, ..., yd of P in Puis(x). Write

L′ = ML+N with N an operator of order 0. As L and L′ annihilate z = y1 + . . .+ yd [ ... ?] we get

N = 0, hence L′ =ML is a multiple of L.

(R7) Let y(x) =
√
1 + x +

√
2 + x. This is an algebraic series with minimal polynomial P = (y2 −

2x − 3)2 − 2(x2 + 3x + 2) of degree 4. Its roots are ±
√
1 + x ±

√
2 + x, spanning the two-dimensional

C-vectorspace VP (x) = C
√
1 + x + C

√
2 + x. By what we said earlier, we thus know that the minimal

operator annihilating the roots of P has order 2. The coefficient a3(x) of P is 0, so we are not in the situation

of example R6. But both L1 = ∂ − 1
1+x and L2 = ∂ − 1

2+x divide L from the right, L =M1L1 =M2L2.

So L is reducible. Actually, it is the least common left multiple of L1 and L2.

(R8) The divergent series y(x) =
∑∞

k=0 k!x
k+1 = x + x2 + 2x3 + 6x4 + 24x5 + . . . (example 6’ in

the Introduction) is differentially finite with minimal equation Ly = x3y′′ + (x2 − x)y′ + y = 0. The

series is integral and transcendent (since divergent), and 0 is an irregular singularity of L. The initial

form at 0 is given by the first order operator L0 = −x∂ + 1, while L has order 2. Note that the function

y1(x) = exp(− 1
x ) is also a solution of Ly = 0. Further, y2(x) = exp(− 1

x ) · Ei(−
1
x ) is a second, linearly

independent solution, with Ei(x) =
∫ x

−∞

et

t
dt = −γ − log(x)−

∑
k

(−1)k xk

k · k!
the exponential integral,

and γ the Euler-Mascheroni constant. To prove that y2(x) is a solution, use Ei′(x) = − 1
x exp(−x).

The expansion at infinity is (see example (I11) in the introduction)

L̃ = ∂2 + [2x+ x4 − x3]∂ + x7.

Funny enough, y1( 1x ) = exp(−x) is not a solution of the equation L̃y = 0, nor y( 1x ) =
∑∞

k=0
k!

xk+1 .

(R9) In [Stan1, remark (g), p. 186] Stanley asks for an algorithm which should allow one to decide whether

a differentially finite power series y(x) is algebraic. In general, by studying the asymptotics of the series,

transcendence is easier to prove. The series y(x) =
∑∞

k=0

(
2k
k

)2m
is transcendental for all integers m ≥ 1;

responding to a question of Stanley in [loc.cit.] it is proven in [ABD, p. 5] that also z(x) =
∑∞

k=0

(
2k
k

)2m+1

is transcendental.

The differential equations for y(x) and m = 1, 2, 3, 4 are given by the irreducible operators

m = 1: L = (1− 4x)∂ − 2,

m = 2: L = (x− 16x2)∂2 + (1− 32x)∂ − 4,

m = 3: L = (x2 − 64x3)∂3 + (3x− 288x2)∂2 + (1− 208x)∂ − 8

m = 4: L = (x3 − 256x4)∂4 + (6x2 − 2048x3)∂3 + (7x− 3712x2)∂2 + (1− 1280x)∂ − 16.

For m = 3, the operator L is the symmetric square of L1 = (64x2 − x)∂2 + (96x − 1)∂ + 4, and the

solutions of Ly = 0 are hypergeometric series of the form

y1(x) = (F (1/4, 1/4; 1/2; 1− 64x)2,

y2(x) = F (3/4, 3/4; 3/2; 1− 64x)2 · (64x− 1),

y3(x) = F (1/4, 1/4; 1/2; 1− 64x) · F (3/4, 3/4; 3/2; 1− 64x) ·
√
64x− 1.

(R10) Take the polynomial P (x, y) = x2y − x4 − y4 defining an algebraic curve X ⊂ C2. The origin is

a singular point of X , with tangent cone defined by x2y = 0. It turns out that X has two local analytic
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branches at 0, one smooth and tangent to the x-axis, the other singular with vertical tangent and cusp

singularity isomorphic to x2 − y3 = 0, see Fig. CTBA.

Figure CTBA: The real plane algebraic curve with equation x2y = x4 + y4.

The four solutions y(x) of P (x, y) = 0 define local parametrizations of the branches. Computations with

Maple yield

y1(x) = x2 + x6 + 4x10 + 22x14 + 140x18 +O(x22),

y234(x) = ξx
2
3 − 1

3x
2 − 2

9ξ
2x

10
3 − 20

81ξx
14
3 − 1

3x
6 +O(x

22
3 ),

where ξ is a third root of unity. The minimal differential equation is

(27x3 − 256x7)y′′′ − (81x2 + 768x6)y′′ + 141xy′ − 120y = 0.

It can be proven that the equation is a symmetric square.

(R11) Take the polynomial P (x, y) = xy − x2 − y4 defining an algebraic curve Y ⊂ C2. The origin is a

singular point of X , with tangent cone defined by x(y − x) = 0. It turns out that X has two local analytic

branches at 0, both smooth and tangent to the y-axis, respectively, the first diagonal, see Fig. CTBB.

Figure CTBB: The real plane algebraic curve with equation xy = x2 + y4.

The roots are the (algebraic) series

y1(x) = x+ x3 + 4x5 + 22x7 + 140x9 + 969x11 + 7084x13 + 53820x15 + 420732x17 +O(x19)
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and

y2(x) = x
1
3 − 1

3x−
2
9x

5
3 − 20

81x
7
3 − 1

3x
3 − 364

729x
11
3 − 5236

6561x
13
3 − 4

3x
5 − 135850

59049 x
17
3 +O(x

19
3 ).

The minimal differential equation is

(27x3 − 256x5)y′′′ − 768x4y′′ + (15x− 192x3)y′ − 15y = 0.

Its unique power series solution is

y(x) = x · F (−124 ,
5
24 ;

2
3 ;

256
27 x

2) · F ( 7
24 ,

13
24 ;

4
3 ;

256
27 x

2),

the other two solutions being Puiseux series. The equation is a symmetric square, for instance of

(108x2 − 1024x4)y′′ − 1024x3y′ + (15 + 64x2)y = 0.

(R12) In the example of [Stan1, ex. 2.5, p. 179] it is mentioned that the secans function y(x) = sec(x) =
1

cos(x) is not differentially finite, whereas its inverse inverse z(x) = cos(x) is differentially finite with

equation z′′ + z = 0.

An algebraic power series h(x) with h(0) = 0 is called étale algebraic if its minimal polynomial P (x, y)

satisfies the assumption ∂yP (0, 0) 6= 0 of the implicit funtion theorem. It is then the unique power series

solution of P (x, y) = 0 at 0. It can be constructed iteratively up to any degree by Newton’s algorithm.

The respective definition also applies for algebraic series with non-zero constant term, assuming that

∂yP (0, h(0)) 6= 0. The next lemma says that any algebraic series becomes étale algebraic after clipping off

its expansion up to sufficiently high degree. It also holds for series in several variables.

Simple Root Lemma. (one variable case) For any algebraic series h(x) =
∑∞

k=0 ckx
k in one variable

over a field of characteristic 0, there is an integer e ≥ 1 such that the series a(x) =
∑∞

k=e+1 ckx
k−e

is a simple root of its minimal polynomial. Said differently, every univariate algebraic series

decomposes into a sum

h(x) = k(x) + xe · a(x)

of a polynomial k and a monomial multiple xe · a of an étale algebraic series a.

Remarks. (a) For the proof it is convenient to choose the decomposition such that a(0) = 0.

(b) For e one can choose the order of ∂yP (x, h(x)). How does it relate to the degree of the minimal

polynomial without knowing h? Is there an effective way to determine e?

Proof. Let P (x, y) be the minimal polynomial of h. It has minimal degree, hence its partial derivative ∂yP

has non-zero evaluation at h, say, ∂yP (x, h(x)) 6= 0 [... in positive characteristic p > 0, it could happen

that ∂yP is identically zero, but then P would have been a polynomial in yp as e.g. yp − (1 + x).]. Let

e ≥ 0 be the order of ∂yP (x, h(x)). Write h(x) = k(x) + a(x) · xe with a polynomial k(x) of degree ≤ e
(the truncation of h at degree e) and a series a(x) vanishing at 0, a(0) = 0. Taylor expansion gives

0 = P (x, h) = P (x, k + a · xe) = P (x, k) + ∂yP (x, k) · a · xe + S(x, a · xe),

with S(x, y) a polynomial of order at least two in y. Now observe that

∂yP (x, k) = ∂yP (x, h− a · xe) = ∂yP (x, h)− ∂2yP (x, h) · a · xe + T (x, a · xe),

with T (x, y) a polynomial of order at least two in y. As a(0) = 0 and hence ord(a · xe) > e, and as

ord(T (x, a · xe)) > e, it follows that ∂yP (x, k) and ∂yP (x, h) have the same order e. From the first
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displayed equation we now conclude that P (x, k) has order at least 2e. Write it as P (x, k) = x2e · R(x)
for some polynomial R(x). Divide the first displayed equation by x2e and get

a+Q(x, a) +R(x) = 0

with Q(x, y) = x−2e · S(x, y · xe) a polynomial of order at least two in y. Thus the series a(x) =

x−e · (h(x)− k(x)) is a simple root of the equation

P̃ (x, y) := y +Q(x, y) +R(x) = 0.

Remarks. (a) The attentive reader will observe that the proof is a predecessor of the proof of the Artin

approximation theorem given below.

(b) If the series h is defined over Q, the polynomials P̃ and Q̃will involve finitely many rational coefficients.

Replacing then x by an integer multiple L · x with L having sufficiently many prime divisors (e.g., taking

for L the least common multiple of all occurring denominators of P̃ and Q̃), one achieves via P̃ (L2 ·x, Ly)
a minimal polynomial for a(L · x) with integer coefficients. This observation will be useful in the proof of

the Eisenstein theorem below.

(c) It seems that the above proof does not use that K has characteristic zero.

(d) Algebraic series with complex coefficients are holomorphic.

Eisenstein’s theorem (Eisenstein 1852) [Hei, Herm, Sus] Let h(x) =
∑
ckx

k ∈ Q〈x〉 be an algebraic

series in one variable with rational coefficients ck ∈ Q.

(i) The denominators of the coefficients ak have only finitely many prime divisors.

(ii) There exists a non-zero integer ` ∈ N so that h(` · x) ∈ Z〈x〉 has integer coefficients, i.e., h is

globally bounded.

Remarks. (a) Clearly, assertion (ii) implies (i). Eisenstein stated the theorem without proof in 1852 in the

case where h is an étale algebraic series. Heine proposed in 1853 a proof which seems to be incomplete, and

then gave in [...] a rigorous proof, cited by Pólya and Szegö in [PoSz]. They also cite Weierstrass. See also

[Ber] for an alternative proof within classical algebraic geometry and using the Riemann-Roch theorem.

Other proofs were proposed by Hermite and Susák.

(b) We have already seen that rational series are globally bounded. The example
√
1 + x of the introduction

is also globally bounded.

(c) There are various attempts to bound the smallest integer `, the so called Eisenstein bound [DvP, Schm,

BiBo, DwR].

(d) The theorem implies that univariate algebraic series with rational coefficients which are not polynomials

have finite radius of convergence. Indeed, a series inZ〈x〉 is either a polynomial or has radius of convergence

≤ 1.

(e) Denef and Lipshitz prove in [DeLi1, Thm. 6.2, page 60] that any algebraic series in n variables is the

diagonal of a rational series in 2n variables. From this follows immediately Eisenstein’s theorem in several

variables, see below. Safonov [Saf1] states and seems to prove the multivariate version of Eisenstein’s

theorem using the description of multivariate algebraic series as certain diagonals of rational series in just

one more variable.

Proof. We give two proofs. (i) (via implicit function theorem) By the univariate Simple Root Lemma we

may assume (after truncation at a suitable degree and division of the remainder series by a monomial) that

h is an étale algebraic series. Write the minimal polynomial of h as P (x, y) = `y + Q(x, y) + R(x), for
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` ∈ Z \ {0}, with polynomials Q and R with integer coefficients and such that Q is at least quadratic with

respect to y.

After substitution of x by `2 · x and multiplication of y by ` we may assume that P is in fact of the form

P (x, y) = y+Q(x, y)+R(x) with polynomialsQ andR with integer coefficients. The Newton algorithm

described to construct the solution of P (x, y) = 0 at 0 then yields the series h(x). It must have integer

coefficients since no divisions occur. This is what had to be shown.

(ii) (via diagonals) One may also use Furstenberg’s theorem: Every univariate algebraic series h(x) with

coefficients in Q is the diagonal of a rational series in two variables: r(y, z) =
∑

ij cijy
izj , diag(r)(x) :=∑

i ciix
i. It is easy to see that rational series are globally bounded, and hence also their diagonals are. 	
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